

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA ELECTRÓNICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA

PLAN DE ESTUDIOS 2015-II

SÍLABO

1. DATOS GENERALES:

1.1 Asignatura : TALLER DE ELECTRÓNICA I

1.2 Código : IE 0504

1.3 Tipo de Curso : Taller Experimental1.4 Área académica : Sistemas Digitales

1.5 Condición : Obligatorio1.6 Nivel : V Ciclo1.7 Créditos : 2

1.8 Horas por Semana : Taller (4)

1.9 Requisito1.10 Profesor1.10 Profesor1.10 E- 0401 Circuitos Digitales II1.10 MSc. Ing. Raúl Hinojosa Sánchez

2. SUMILLA.

Al finalizar los estudiantes obtienen las competencias necesarias en el campo del diseño de circuitos de complejidad básica, aplicando el diseño de la lógica combinacional y secuencial haciendo uso de software de simulación y fabricación de circuitos impresos.

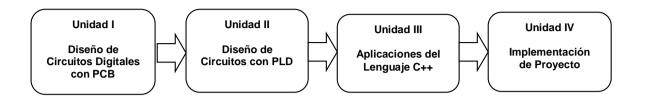
Comprende: Diseño de circuitos lógicos de tipo combinacional y secuencial, el uso y aplicación de los dispositivos programables y el empleo del lenguaje de programación en C++ con aplicaciones electrónicas aplicadas.

3. COMPETENCIAS DE LA CARRERA.

El curso aporta al logro de las siguientes competencias de la carrera

- 3.1 Analiza, diseña, especifica, modela, selecciona y prueba circuitos, equipos y sistema electrónicos analógicos y digitales, con criterio para la producción industrial y uso comercial.
- 3.2 Realiza proyectos de investigación científica y desarrollo tecnológico, liderando e integrando equipos multidisciplinarios, difundiendo los resultados con claridad y lenguaje apropiado.
- 3.3 Gestiona y dirige estudios, proyectos de base tecnológica y de transferencia de tecnología administrando recursos humanos, tecnológicos y materiales.

4. COMPETENCIAS DEL CURSO


Al Término del curso, el alumno será capaz de:

- 4.1 Diseñar e implementar circuitos digitales empleando las técnicas de diseño empleadas en la teoría.
- 4.2 Diseñar circuitos digitales empleando PLD.
- 4.3 Aprenderá a relacionar el lenguaje de programación C++ en aplicaciones digitales, empleando lógica MSI.
- 4.4 Construye circuitos y digitales básicos, aplicando herramientas de simulación CAD avanzadas. Construye circuitos electrónicos digitales de mediana complejidad, de aplicación inmediata en una tarjeta impresa, y su comprobación de su operación de componentes en conjunto.

5. RED DE APRENDIZAJE

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA ELECTRÓNICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA

6. PROGRAMACION SEMANAL DE LOS CONTENIDOS

UNIDAD TEMATICA N° 1:

Técnicas de diseño con circuitos digitales tipo MSI

Logro: Utilizar adecuadamente las principales técnicas de diseño con circuitos digitales combinacionales y secuenciales. Empleo avanzado de simuladores de circuitos digitales para la fabricación de circuitos impresos.

N° de horas: 12

SEMANA	CONTENIDO	ACTIVIDADES
1	 Revisión de circuitos lógicos combinacionales y secuenciales. Técnicas de Simplificación en circuitos digitales. Simuladores avanzados de circuitos digitales 	 Exposición de conceptos Descripción de elementos y Circuitos. Descripción y manejo del Simulador Altera.
2	 Aplicación de los Flip Flop. Diseño de circuitos antirrobote Aplicación de registros y contadores. Técnicas de simulación. 	 Exposición de conceptos Descripción de elementos y circuitos.
3	 Diseño de un circuito lógico empleando Lógica combinacional y secuencial del tipo MSI. Implementación del circuito en PCB Combinacional/Secuencial 	Implementación del circuito para la verificación del funcionamiento.

UNIDAD TEMATICA N° 2:

Diseño de circuitos lógicos empleando el PLD.

Logro: Aprender a utilizar la lógica programable con los Dispositivos Lógicos Programables.

N° de horas: 20

SEMANA	CONTENIDO	ACTIVIDADES
4	 Arquitectura de los ASICS Matrices de puertas Células Normalizadas Clases de PLDS. Características internas Software de desarrollo del PLD Ecuaciones Booleanas 	 Exposición de conceptos Descripción de los elementos y circuitos. Lectura de diagramas eléctricos
5	 Diseño de circuitos combinacionales con PLD Diseño de circuitos con ecuaciones indexadas empleando 	Exposición de conceptosDescripción de los

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA ELECTRÓNICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA

		Elementos y circuitos.Lectura de diagramas eléctricos.
6	 Diseño de circuitos secuenciales con PLD Diseño de Flip Flops Diseño de contadores en PLD Diseño de un convertidor de código en PLD 	 Exposición de conceptos Descripción de los elementos y circuitos. Lectura de diagramas eléctricos.
7	 Diseño de un circuito lógico empleando lógica Combinacional y secuencial con un PLD. Implementación del circuito combinacional 	 Implementación del circuito para la verificación del funcionamiento.
8	Exámenes Parciales	

UNIDAD TEMATICA N° 3: Aplicaciones del Lenguaje C++

Logro: Aprender a usar el Lenguaje de Programación C++ empleando circuitos digitales y el computador

N° de horas: 16

	CONTENIDO	ACTIVIDADES
SEMANA		
9	 Principales comandos del C++ Instrucciones del C++ Descripción de funcionamiento básico de computador Arquitectura interna del computador Los puertos de comunicaciones 	 Exposición de conceptos Descripción de los elementos y circuitos. Lectura de diagramas eléctricos.
10	 Aplicación del C++ para el control del puerto paralelo y serial del computador. Principales funciones de control del C++ Uso de la tarjeta de interface paralela empleando el C++ Principales modos de direccionamiento usando el PPI de la tarjeta de interface. 	
11	 Uso de interfaces de tipo teclado empleando la interface Paralela, y el C++ Uso de interfaces de tipo display y LCD, empleando la interface Paralela y el C++. 	 Exposición de conceptos Descripción de los elementos y circuitos. Lectura de diagramas eléctricos.
12	 Conversores AD/DA empleando el C++ Diseño de un circuito lógico empleando la interface paralela y el computador 	Desarrollo experimental de un circuito.

UNIDAD DE APRENDIZAJE 4: IMPLEMENTACION DE PROYECTO FINAL

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA ELECTRÓNICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA

Logro: Diseño de un circuito digital empleando el Lenguaje C++ y el puerto paralelo de la computadora

N° de horas: 20

SEMANA	CONTENIDO	ACTIVIDADES
13, 14, 15	Proyecto Final del curso. Diseño e implementación de un circuito tipo digital de complejidad media-avanzada de aplicación inmediata.	Desarrollo experimental de un circuito electrónico desde la concepción hasta el circuito multipropósito o impreso.
16	Exámenes Finales	
17	Exámenes Sustitutorios	

7. METODOLOGÍA

- Exposición. Clase magistral del profesor. El profesor expone los fundamentos teóricos del tema a tratar.
- Interrogación didáctica con los alumnos. Se realizan preguntas a los alumnos para que el docente evalúe el grado de comprensión de los alumnos.
- Exposición de ejemplos aplicativos prácticos. Con los cuales el docente puede aclarar ciertas dudas que hayan quedado luego de la explicación.
- Análisis de los ejemplos presentados. El docente analizará los ejemplos y propiciara el debate acerca de los mismos.
- Planteo de problemas de aplicación. Se plantean problemas con los cuales el alumno puede encontrar formas de aplicar la teoría expuesta.
- Solución de los problemas planteados en forma grupal bajo la supervisión del profesor. Se forman grupos de alumnos que discuten la forma de resolver los problemas planteados.
- Exposición de los alumnos, por grupos, de las soluciones encontradas a los problemas planteados. Los grupos formados deben exponer ante el resto de la clase la solución a determinados problemas.

8. EVALUACIÓN

La nota final se obtiene de:

Promedio de Informes = (INT1+INT2+INT3+INT4)/3 Promedio de Proyectos = (PYT1+PYT2+PYT3+PYT4)/3 Proyecto Final = 2((INF1+PYF1+SUP1)/3)

Nota Final =(((INT1+INT2+INT3+INT4)/3)+((PYT1+PYT2+PYT3+PYT4)/3)+(2*((INF1+PYF1+SUP1)/3)))/4

9. BIBLIOGRAFIA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA ELECTRÓNICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA

1. Morris Mano : Diseño Digital (2003). Ed. PEARSON

2. John Wakerly: Diseño Digital, principios y prácticas.(2001) Ed. PEARSON

3. Ronal Tocci
4. John Hayes
3. Sistemas Digitales, Principios y Aplicaciones (2003) Ed. PEARSON
4. John Hayes
5. Introducción al Diseño Lógico Digital. Ed ADDISON WESLEY

5. Mariano Barrón : Lógica Programable. Ed. MACGRAW HILL

6. Francisco Cevallos : Lenguaje C++. Ed. RA-MA S.A.

7. Enlaces de interés:

http://www.altera.com/

http://www.electronred.es.vg/

http://www.microplans.com/

http://www.soloelectronica.net/