

UNIVERSIDAD RICARDO PALMA DEPARTAMENTO ACADÉMICO DE CIENCIAS FACULTAD DE INGENIERÍA

SÍLABO

PLAN DE ESTUDIOS 2015-II

1. DATOS ADMINISTRATIVOS

1.1 Nombre del curso : FÍSICA II 1.2 Código : AC F003

1.3 Tipo de curso : Teórico – Práctica - Laboratorio

1.4 Área Académica:Física1.5 Naturaleza:Obligatorio1.6 Nivel:III Ciclo1.7 Créditos:4

1.8 Número de horas de Teoría : Teoría: 2, Práctica: 2, Laboratorio: 2

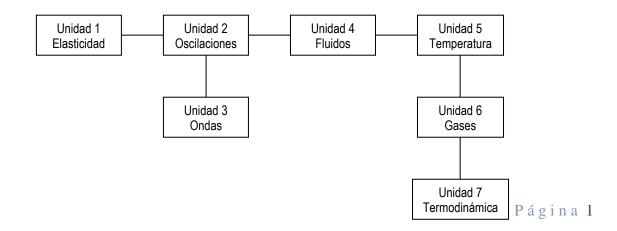
1.9 Requisito : ACF002 (Física I)

1.10 Semestre Académico : 2019-I

1.11 Profesores : R. Ventocilla, M. Sánchez, J. Miranda, M. Brocca, O. Varas

2. PROPÓSITOS GENERALES

Describir y explicar los fenómenos relacionados con la Mecánica de los medios continuos y de la Termodinámica. Trata los temas: Elasticidad, Movimiento Oscilatorio, Ondas Mecánicas, Estática de Fluidos, Dinámica de Fluidos, Teoría Cinética de los Gases, Calor y Temperatura, Trabajo y Primera Ley de la Termodinámica, Segunda Ley de la Termodinámica y Entropía.


3. SÍNTESIS DEL CONTENIDO

Elasticidad. Oscilaciones. Ondas Mecánicas. Sonido. Hidrostática. Hidrodinámica. Calorimetría. Transmisión del calor. Gas Ideal. Primera Ley de la Termodinámica. Maquinas Térmicas. Segunda Ley de la termodinámica. Entropía.

4. COMPETENCIAS DEL CURSO

- 4.1 Identifica casos de comportamiento elástico de los materiales.
- 4.2 Opera con oscilaciones, ondas armónicas y ondas sonoras.
- 4.3 Analiza las propiedades de los fluidos en reposo y en movimiento.
- 4.4 Identifica los procesos de transferencia de calor por conducción, convección y radiación
- 4.5 Opera con gases ideales en procesos térmicos y maquinas térmicas, obteniendo su eficiencia.

5. RED DE APRENDIZAJE

6. PROGRAMACIÓN SEMANAL DE LOS CONTENIDOS

UNIDAD 1: ELASTICIDAD

Logro de la unidad:

Analiza y calcula deformaciones y esfuerzos en diferentes casos de cuerpos sometidos a fuerzas o cargas externas, valorando su importancia en su carrera.

SEMANA	CONTENIDO	ACTIVIDADES	
1	Elasticidad de los materiales.	Introducción al curso.	
	Esfuerzo y Deformación.	Análisis de casos.	
	Ley de Hooke. Módulos de Elasticidad.	Solución de ejercicios y problemas.	
	Energía Elástica.		

UNIDAD 2: OSCILACIONES

Logros de la unidad:

Analiza, distingue y aplica las ecuaciones de la cinemática, dinámica y energía a los diferentes casos de sistemas oscilantes, con eficiencia y responsabilidad.

SEMANA	CONTENIDO	ACTIVIDADES	
2	Movimiento Armónico Simple (MAS).	Introducción.	
	Cinemática del MAS. Dinámica del MAS.	Análisis de casos. Ejemplos.	
	Energía de un oscilador armónico simple.	Experimento Demostrativo.	
		Laboratorio N°1: Elasticidad (Virtual)	
3	Movimiento Armónico Amortiguado.	Solución de problemas.	
	Oscilaciones Forzadas y Resonancia.	Primera Práctica Calificada	
	Combinaciones de MAS.	Laboratorio N° 2: Movimiento Armónico	
		Simple (Real)	

UNIDAD 3: ONDAS MECÁNICAS

Logros de la unidad:

Formula, caracteriza y cuantifica las ecuaciones y propiedades de diferentes clases de ondas, valorando su importancia en la ingeniería.

SEMANA	CONTENIDO	ACTIVIDADES
4	Concepto de onda. Características de las ondas. Tipos de Ondas. Descripción matemática de la propagación de una onda en una dimensión. Onda senoidal o armónica.	Introducción. Análisis de casos. Experimento Demostrativo. Solución de problemas Laboratorio N°3: Movimiento Ondulatorio y Ondas Estacionarias. (Real)
5	Velocidad de propagación de la onda. Velocidad de oscilación. Ecuación de la onda en una dimensión. Potencia e Intensidad de una Onda. Principio de Superposición. Interferencia de Ondas Armónicas. Ondas Estacionarias y Resonancia.	Análisis de casos. Experimento demostrativo. Solución de problemas. Laboratório N°4 Efecto Doppler (Virtual)
6	Ondas Sonoras. Características. Potencia e Intensidad de las Ondas sonoras. Sistemas Vibratorios y fuentes de sonido. Efecto Doppler.	Experimento demostrativo. Solución de problemas. Laboratório Nº 5. Principio de Arquimedes (Real) Segunda Práctica Calificada

UNIDAD 4: FLUÍDOS

Logros de la unidad:

Aplica las leyes de la estática y la dinámica de los fluidos a los diferentes casos, con rigor y empeño.

SEMANA	CONTENIDO	ACTIVIDADES	
7	Estática de fluidos.	Análisis de casos.	
	Densidad. Peso Específico y Presión.	Experimento Demostrativo.	
	Variación de la presión en un fluido con la profundidad.	Solución de problemas	
	Principios de Pascal y de Arquímedes.	Primer control de laboratorio (CL1).	
8	EVALUACIÓN: UNIDADES 1, 2, 3 y 4	EXAMEN PARCIAL.	
9	Dinámica de fluidos. Características del movimiento. Fluido Ideal.	Análisis de Casos.	
	Líneas de flujo. Tubo de flujo.	Experimento Demostrativo.	
	Ecuaciones de continuidad y de Bernoulli.	Laboratorio N° 6: Ecuación de Bernoulli	
	Líquidos Reales y Viscosidad. Ecuación de Poiseuille.	(Virtual)	
		Solución de problemas.	

UNIDAD 5: TEMPERATURA Y CALOR

Logros de la unidad:

Aplica los conceptos de temperatura y calor en la comprensión y de las propiedades térmicas de la materia, apreciando su importancia en su formación..

10	Temperatura. Descripciones Macroscópica y Microscópica de un sistema. Concepto de Temperatura. Equilibrio Térmico. Medición de Temperatura y Escalas Termométricas. Dilatación Térmica	Introducción. Análisis de casos. Solución de problemas. Experimento Demostrativo. Laboratorio N° 7: Coeficiente de Dilatación Lineal (Real)	
11	Concepto de Calor. Energía interna, energía térmica. Capacidad Calorífica. Calor Específico. Equivalente Mecánico del Calor. Cambios de Estado. Transmisión del Calor. Conducción, Convección y Radiación.	Análisis de casos. Experimento demostrativo. Solución de problemas. 3ra. Práctica Calificada Laboratorio N° 8: Calor Específico de Sólidos. (Real)	

UNIDAD 6: GASES Logros de la unidad

Describe y aplica los modelos macroscópico y microscópico de los gases en los procesos termodinámicos, con eficiencia y responsabilidad.

SEMANA	CONTENIDO	ACTIVIDADES
12	Gas Ideal. Descripción Macroscópica. Ecuación de Estado. Descripción Microscópica de un gas Ideal. Teoría cinética.	Análisis de casos. Experimento Demostrativo. Solución de ejercicios Laboratorio N°9 Procesos Termodinámicos (Virtual)
13	Modelo molecular de un gas ideal. Cálculo cinético de la presión. Interpretación Cinética de la Temperatura. Energía Interna. Teorema de la Equipartición de la Energía. Capacidades caloríficas de los gases ideales. Gases Reales.	Análisis de casos. Solución de ejercicios. Laboratorio N°10: Ciclo de Carnot. (Virtual)

UNIDAD 7: TERMODINÁMICA

Logros de la unidad:

Aplica las leyes de la termodinámica a diferentes casos de máquinas Térmicas, apreciando su importancia en la ingeniería.

SEMANA	CONTENIDO	ACTIVIDADES
14	Calor y Trabajo. Primera Ley de la Termodinámica. Aplicaciones. Procesos Isotérmicos, Isobáricos, Isovolumétricos y Adiabáticos.	Análisis de casos. Experimento demostrativo. Solución de problemas. Cuarta Práctica Calificada. Recuperación de Laboratorio.
15	Máquinas Térmicas. Segunda Ley de la Termodinámica. Procesos Reversibles e Irreversibles, Ciclo de Carnot. Entropía: Procesos Reversibles e Irreversibles. Entropía y Segunda Ley. Entropía y Probabilidad.	Análisis de casos Experimento demostrativo. Solución de problemas. Segundo control de Laboratorio (CL2).
16	EVALUACION UNIDADES 4, 5, 6 y 7	EXAMEN FINAL
17	EVALUACIÓN Todas las Unidades	EXAMEN SUSTITUTORIO

7. TÉCNICAS DIDÁCTICAS

- 7.1 Exposición de los temas en cada clase, con participación activa de los estudiantes.
- 7.2 Solución de problemas propuestos por el profesor a los alumnos para su desarrollo en clase.
- 7.3 Presentación en el aula de experimentos demostrativos y/o videos y/o simulaciones de fenómenos físicos que refuercen los conceptos teóricos vertidos en la clase.
- 7.4 Realización por los estudiantes de prácticas de laboratorio en relación con los fenómenos físicos tratados en el curso.
- 7.5 Análisis de Casos

8. EQUIPOS Y MATERIALES

Equipos experimentales de Física, Multimedia, Software de Física, Pizarra

9. EVALUACIÓN

Instrumento	Sigla	Peso
Promedio Prácticas Calificadas	PC	1
Promedio Laboratorio	PL	1
Control de Laboratorio	CL	2
Examen Parcial	EP	1
Examen Final	EF	1
Examen Sustitutorio	ES	1
Nota Final	NF	

- De 04 practicas calificadas, se anula una práctica que tenga la menor nota.
- De 10 practicas de laboratorio, se anulan dos con las notas mas bajas de laboratorio.
- Promedios de prácticas calificadas (PC) y laboratorio (PL):
- Se toman dos (02) controles de laboratorio (CL) que tiene como peso dos, cada control.

$$PC = \frac{P1 + P2 + P3 + P4}{3}$$

$$PL = \frac{L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8 + L9 + L10 + 2CL1 + 2CL2}{12}$$

La nota del Examen Sustitutorio (ES) reemplaza al Examen Parcial o Final de menor nota. El Promedio Final (PF) resulta de aplicar la siguiente fórmula:

$$PF = \frac{EP + EF + PC + PL}{4}$$

REQUISITOS PARA RENDIR EL EXAMEN SUSTITUTORIO:

Art. 10º Para que los alumnos puedan rendir el examen sustitutorio, deberán cumplir los siguientes requisitos:

- 1. Haber rendido el examen parcial y/o final.
- 2. Haber alcanzado un promedio no menor de 07,0 en prácticas y/o monografías según el caso que corresponda.
- 3. Si ha rendido el examen parcial y final, haber alcanzado en el curso un promedio ponderado igual o superior a 07

10. REFERENCIAS BIBLIOGRÁFICAS

- Serway- Jewet. Física para Ciencias e Ingeniería volumen 1. 2018. Décima Edición. Cengage Learning
- Sears-Zemansky-Young-Freedman. Física Universitaria Vol. 1. 2013. Treceava Edición. PEARSON EDUCACIÓN.
- Resnick-Halliday-Krane. Física Vol. 1. 2006, Quinta edición. Editorial Patria.
- Paul A. Tipler. Física para la Ciencia y la Tecnología Vol. 1 2010 Sexta Edición.
 Editorial Reverte