

Facultad de Ingeniería Escuela de Ingeniería Mecatrónica

Examen Parcial - Semestre 2011-I

Curso : IM 0703 SENSORES Y ACTUADORES INDUSTRIALES

Grupo : 01

Profesor : Ing. Javier Cieza Dávila Día : Sábado 14 de mayo del 2011

Hora : 13.00 a 15.00 horas

Duración de la prueba : 120 minutos

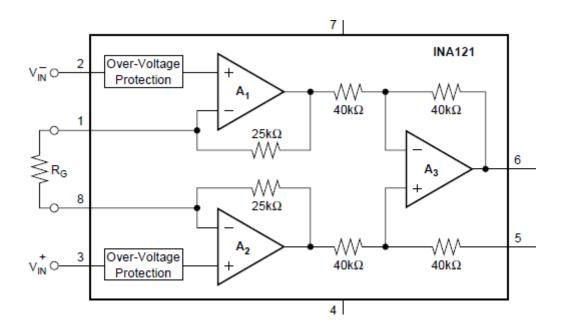
Nota: La prueba es sin copias ni apuntes.

Está prohibido el préstamo de calculadoras y correctores, uso de celulares, consumo de

bebidas, comidas y cigarrillos.

Pregunta Nº 01 (5 puntos)

La siguiente gráfica representa el comportamiento de un sensor de temperatura. El fabricante indica que el comportamiento del sensor es lineal entre los 10°C y 100°C.


- a) Determine la ecuación que rige el comportamiento del sensor (0.5 punto)
- b) Determine la sensibilidad del sensor (0.5 punto)
- c) Diseñe un circuito de acondicionamiento basado en amplificadores operacionales, de tal manera que la salida sea 5V para 100°C y 0V para 10°C **(4 puntos)**

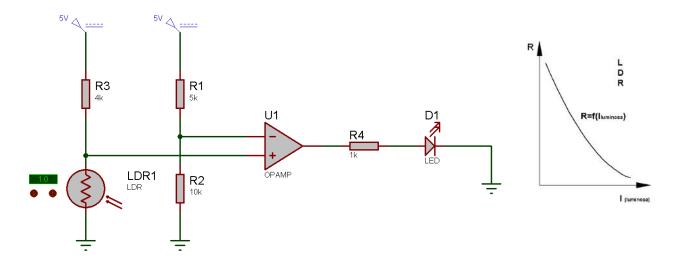
Pregunta Nº 02 (2 puntos)

Un sensor produce una salida máxima de 5V. ¿Qué longitud de palabra (#bits) se necesita en un convertidor analógico digital para obtener una resolución de 10mV?

Pregunta Nº 03 (5 puntos)

La siguiente figura nos muestra el circuito de un amplificador de instrumentación INA121 utilizado en transductores de alta impedancia. Los terminales 2 y 3 son las entradas del amplificador, el terminal 5 se conecta a GND y el terminal 6 es la salida del circuito.

- a) Determine la ganancia del circuito en función de Rg. (4 puntos)
- b) Indique que es el CMRR. (1 punto)


Pregunta Nº 04 (6 puntos)

Conteste a las siguientes preguntas:

- a) ¿Qué es el slew rate en un OPAMP y que trascendencia tiene este parámetro en el ancho de banda del OPAMP? (1 punto)
- b) Indique y explique dos ventajas y dos desventajas de los sensores de proximidad por ultrasonido. **(1 punto)**
- c) Explique que es una celda de carga e indique dos aplicaciones (1 punto)
- d) Explique la diferencia entre un sensor de desplazamiento angular usando un encoder incremental y un encoder absoluto (1 punto)
- e) Explique el funcionamiento de un sensor de desplazamiento LVDT (Lineal variable differenctial transformer). (1 punto)
- f) ¿Cuándo es conveniente realizar una linealización de un sensor por el método de mínimos cuadrados del error? (1 punto)

Pregunta Nº 05 (2 puntos)

Se tiene el siguiente circuito detector basado en un LDR cuya curva de comportamiento se muestra a la derecha del circuito.

- a) Determine y explique si el circuito es un detector de luz o un detector de sombra (1 punto)
- b) Determine el rango de resistencias del LDR para el cual se enciende el LED. (1 punto)

EL PROFESOR